

EU FP7 IP AESOP ArchitecturE for Service-Oriented Process Monitoring and Control

Prof. Armando Walter Colombo Dr. Thomas Bangemann

> September 29th 2010 Brussels, Belgium

Today's reality General architecture of a process control system

Today's reality Diversity of data and interfaces

- How can we do Large Scale Industrial Monitoring and Control?
- How to manage the overall system?

AESOP → Use of Service oriented Architecture

- How to describe the logical view of the application using services?
- How to deploy this logical view on the physical available resources (e.g. devices)?
- How to do data and message reduction?
- How to address network issues (segmenting the network, addressing performance and security issues)?
- How to address legacy compatibility issues? Carry the user from where he is today!

The most challenging scientific aspects of the project

- Robust and predictable SOA based monitoring and control framework for systems of very large numbers of sensors and actuators
 - □ Event based system control and monitoring
 - □ Management of event handling, reduction of network load
 - □ Formal based high level modeling and SW generation approaches supporting runtime analysis
- Towards real-time SOA featuring different component classes
 - □ Down to resource-constrained devices
- Migration strategies from legacy systems to SOA framework
 and the way around
 - Encapsulation of scan-based oriented subsystem processing in event based system processing
 - Interfacing of event based subsystem processing to scan-based system processing

The most challenging scientific aspects of the project

The way towards ...

Impact and Synergies

- SOA based process automation systems, services and devices resulting from the project will provide more distributed intelligence.
- It will result in more system functionality and more device autonomy.
- Better resilience and reliability will be provided by dynamic characteristics of Web Services (plug & play)
- by automatic service replacement by a similar service, when a service becomes unavailable

Impact and Synergies

- Efficient use of resource, by its adaptability to process conditions, as for example the use of event-driven communications (no communication if nothing happens in the process)
- Ease of use for non-experts will be provided thanks to implemented Web services with plug-and-play mechanisms.
- Tools will automatically detect devices and their embedded services.
- They will propose several filtered and aggregated views of devices or services.

How to proof

Plant Energy Optimization is one Key Use Case to be investigated in AESOP	Application	Use case	Plant lubrication →	Oil lubrication N	Plant energy ω optimization
	Evolution addressed	Migration of legacy systems	х	X	X
		Building completely new systems		X	X
				Ī	
	Tasks dedicated	Engineering	X	Х	
		Control	Х		X
		Monitoring	X	Х	X
		Maintenance	X		
	tse by:	LKAB	X		
	Use ca raised l	Fluidhouse		X	
		Customers of Honeywell			X

AESOP ArchitecturE for Service-Oriented Process - Monitoring and Control

European Commission

SEVENTH FRAMEWORK

EU FP7 IP AESOP ArchitecturE for Service-Oriented Process Monitoring and Control

Prof. Armando Walter Colombo Dr. Thomas Bangemann

> September 29th 2010 Brussels, Belgium

European Commission / SEA – Partner Coordinator Information Society and Media 8682

82 Diana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fi

SOP consortium. All disclosure and/or reproduction rights reserved.